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; Numerical Solution

Governing equations are partial
differential equations

Variables are fluid properties

For numerical solution, equations must
be transformed into algebraic form

l.e. Equations must contain only
numbers
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; Transformation

Transformation of partial differential
equations into algebraic form is called
discretization

Each term of equation must be
transformed
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; Discretization

Three major technigues:
-1nite volume

-1nite element

-Inite difference

Flotherm uses finite volume method
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; Finite Volume

Consider the simple case of steady-
state 1-D diffusion

Remove the convection and transient
terms

g(p(p)—l— div(plJe —Igrade) =S,
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; Finite Volume

In one dimension:
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; Finite Volume

W,E are adjacent cell centres, w,e are
adjacent cell faces
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; Discretization

Governing equation is integrated to give
a discretized equation at the cell centre
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; Discretization

Need the diffusion coefficient and the
gradient at each cell face

Use harmonic average.:

:
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; Discretization

For the gradients:
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; Discretization

The source term may be a function of ¢
In this case, a linear function Is used:

SAV = (Su + Sp(pp)
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; Discretization

The discretized equation may be
written:
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; Discretization

Rearrange:
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; Discretization

Now, we have an algebraic equation
relating field values at P with values at
W and E

a,0p =2y 0y tagQp +5,
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; Discretization

Need to set up equations at each point
In the domain

At domain boundaries, use boundary

conditions
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; Discretization

In 3-D:

P has 6 neighbours

North, South
East, West
Top, Bottom
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; Discretization

Full equation in 3-D

ApQPp =y Oy TAgPE TAGPy T

aQgtarQptagPy +5,
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; Discretization

Convection

div(pU¢p—T'grade)=S,
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; Discretization

Steady, 1-D convection and diffusion:

< (pUg)= i(F d—q)j

dx dx\ dx

Continuity:
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; Discretization

Integrating over a control volume:

(PUA9), - (pUAg), = (FA d—q)j - (FA c

dx

(PUA), - (pUA), =0
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; Discretization

Now, define:
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; Discretization

Substituting:
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; Discretization

So far, we have used central
differencing

This scheme can be unstable If the

Peclet number for a cell is greater
than 2

F
Pe =—
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; Discretization

Upwind differencing

The convected value of ¢ at the cell
face depends on the direction of flow
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; Discretization

Upwind discretization is used by
FLOTHERM
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; Discretization

Non-uniform grid leads to large range of
matrix terms in solution

But, need fine grid to resolve boundary
layers
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; Discretization

False diffusion Is consequence of
upwind scheme of discretization




