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; Fluid Properties

Properties required to describe flow:

normal shear stress (pressure)
viscosity, U, (gives tangential shear stress)
density, p

plus, velocity of fluid flow, u,v,w

temperature of fluid, T
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; Governing Equations

Conservation of Mass

Newton’s Second Law of Motion

First Law of Thermodynamics
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Consider small volume, 0x0yoz 1n space:
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Mass of volume = density x volume

Mass = p 0X0yoz

Assuming volume does not deform, rate of
change of mass with time =
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Mass 1nto control volume
Volume flow rate = velocity x area
Mass flow rate = density x velocity x area

In x direction = p u 0yoz
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Mass out of system

Mass flow rate = density x velocity x area

We need to account for change in velocity
and density across the volume

x velocity out = u + (0u/0x)ox
density out = p + (0p/0x)0x
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Mass flow out of the control volume
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Net mass flow 1n x direction

Net flow out = flow out - flow 1n

op

u
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Net tflow out =
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In three dimensions:

Net flow out =

opu Opv Opw
ox oy 0z
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In + Made = Out + Accumulated

Mass cannot be created, so

In = Out + Accumulated

Accumulated + Out-In=0
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Accumulated + Out-In=0

Or, rate of change of mass with time plus
net flow of mass out equals zero

@Bxﬁyﬁz | (8pu | opv | apwjﬁxﬁyﬁz:O
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In the limit of an infinitessimally small
volume, 0x0yoz — 0, we can write

ot (ox oy oz

op (@pu Opv 8pwj_0

This 1s the continuity equation
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Use Newton’s Second Law to relate forces

on a control volume to the acceleration of
the fluid

Forces are shear stresses and normal
stresses plus body forces such as gravity
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Normal stresses
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; Momentum

Shear stresses
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; Momentum

Net normal stress 1n x direction

oo, OX0yO0Z

OX
Net shear stress 1in x direction

0
Sy o OX0yOZ
oy 0z

Plus body force 1n x direction
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Can express acceleration as rate of change
of velocity

Need to consider change of velocity in
space and time
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; Momentum

Consider velocity in x direction, u

—O0X+—0y+—0z |[+—ot
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change = change 1n space + change 1n time

(au ou Gujéu
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Divide by ot to give us the change over a
small time

ot

6u_(8u6x|8u6y|8u62j ou

ot lox ot oy ot oz ot

0X/ot 1s equivalent to u

Oy/ot 1s equivalent to v

0z/0t 1s equivalent to w
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Acceleration Change 1n Change 1n

in x direction velocity due time of x
to convection  component of
into space velocity
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; Momentum

Now, use Newton’s Second Law to relate
forces on a control volume to the
acceleration of the fluid

Force = Mass x Acceleration

With Mass = p 0x0yoz

and body force per unit mass = f

X
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; Momentum

For each direction (incompressible flow):

u Ou du Guj (acu
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; Momentum

Normal stresses and shear stresses relate to

the fluid pressure and viscosity:

For Newtonian fluids:

ou
=—p+2U—
P MaX
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The Navier-Stokes equation 1n x direction:
0 ov Ou 0 Oow Ou
+8y{ﬂ(6x+8yﬂ+8 { (ax &H“"

Equivalent equations for y and z directions
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; Momentum

The body force 1s the force due to gravity
on the control volume

If gravity acts 1n the negative y direction

(this 1s the default in FLOTHERM)

1
fy =2 8(p,e; —p)3x3ydz
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; Momentum

We can use the Boussinesq approximation
to write the body force as:

f, = gB(T - T, Jox8ydz

__1(op
- p(ﬁij
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First Law of Thermodynamics

Energy 1s Conserved

Rate of change of energy within the element
= Net flux of heat into the element + rate of
work done on element due to body and
surface forces + Source terms
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Energy of a fluid, E

Internal (thermal) energy, I

Kinetic energy, l(uz v w 2)
2

Potential energy (due to gravity)




FLOMERICS

/ resk << Index >>

Net energy change 1n fluid = sum of work

done on fluid + net rate of heat addition +
energy sources

Include potential energy as a source term
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Work done on fluid:

Rate of work done on fluid element by
surface force equals product of force and

component of velocity 1n direction of force
In the x direction:

-+ -+ OX0yO0Z
OX oy 0z




FLOMERICS

Can write equations for each direction and
find the total rate of work done on the fluid
particle by surface stresses
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Net rate of heat transfer to the fluid particle:
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Heat into fluid particle:

q,0y0Z

Heat out of fluid particle:

(qx | q, ijﬁyﬁz
OX
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Net rate of heat addition:

s 5x5y52
OX

Total rate of heat addition per unit volume:
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Fourier’s Law of Conduction gives:
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In vector notation, the energy equation:

p % = —div(pii )+ [8(

+ + +
0z OX oy 0z
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; Governing Equations

We now have enough equations to fully
describe our system

\Y ERR

Momentum

Energy
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; General Transport Equation

We can write a general transport equation,
for a general variable, ¢.

Use vector notation:

div(pU):£8;; | 5(;;\/ | 8pwj

grad(¢)= (aq) 2 G(Pj

Ox 0y 0z
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; General Transport Equation

General equation:

0

—(pp)+div(pUp —T'grade) =S,

ot

\ / [/

transient + convection - diffusion = source




