www.resheji.com

<< Index >>

Compact Models, Advanced Resistances

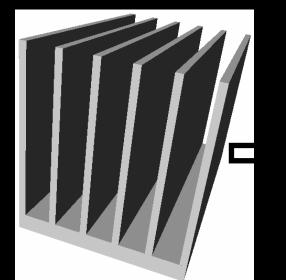
www.resheji.com

© Flomerics Ltd 2001

www.resheji.com

Index

- Why Compact Representation in System Level Model?
 - Faster Solution
 - Less Grid
 - Fewer Iterations Simplified Conjugate Heat Transfer Problem
 - Much Easier to Work With and Debug


www.resheji.com

Index

Compact Representation of Heat Sinks

Option 1: Heat Sink SmartPart Compact

Model (It's Automatic!)

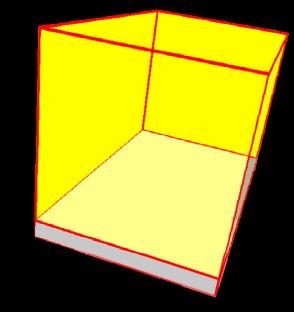


Plate Fins End Fins Fab. type Heat Sink Base 8.000000e+001 Length (Xo) Width (Yo) 5.000000e+001 Thickness 5.000000e+000 Heat Sink Type Plate Fin C Pin Fin Modeling Method C Detailed Model Compact Mode Apply Can

2011-9-7

www.resheji.com

Index

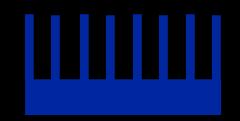
Compact Representation of Heat Sinks

Attributes of a Good Heat Sink Compact Model:

- Preserve the Flow Characteristics Through and Around the Heat Sink
 - Correct Pressure Drop (Contraction, Expansion, Friction)
 - Correct Bypass to Sides and Top
- Preserve the Conduction Characteristics in the Heat Sink Base and Fins (Heat Sink Efficiency)
- Preserve the Convection Effects of the Base and Fins. (Forced or Natural Convection)
- The Heat Sink SP Compact Model Provides a Good representation of these attributes and saves modeling and solve time for System Level Modeling. 2011-9-7

www.resheji.com

Index


- The Pressure Drop Terms Include:
 - Sudden Contraction Entrance Collapsed Resistance.
 - Sudden Expansion Collapsed Resistance for Exit and Top.
 - Volume Resistance for the Laminar or Turbulent
 Frictional Flow in the Heat Sink Channels
- Heat Transfer is Treated Using a Volumetric Based Heat Transfer Coefficient. This Coefficient is a Function of Flow Rate for Turbulent Flow and Constant for Laminar.
- The Heat Transfer Model Does Not Account For Fin Efficiency. Under Predicts Base Temperature for Highly Convective Cases Where Fins Are Thin.

www.resheji.com

Index

Compact Representation of Heat Sinks

- Option 2: Approximation Based on Computational or Physical Wind Tunnel Characterization
 - Represent Heat Sink Base As a Conducting Cuboid
 - Perform(Separate) Computational/Physical Wind Tunnel Analysis to Determine Flow Impedance Characteristics of Fins
 - Account for Impedance of Heat Sink Fins With Volume Resistance in System Level Model
 - Account for Heat Dissipation of Fins with Volume Heat Transfer Coefficient in System Level Model

2011-9-7

www.resheji.com

Index

- Option 2: Approximation Based on Computational Wind Tunnel Characterization (Cont.)
 - Duct Detailed Fins (Only) of Heat Sink With Computational Domain: Use Symmetry Faces on 4 Long Sides and Open Faces on Ends
 - Extend the Computational Domain as Shown
 - Use Fixed Flow Device and Collapsed Resistance (or Nothing) for Ends

www.resheji.com

Index

- Option 2: Approximation Based on Computational Wind Tunnel Characterization (Cont.)
 - Select Automatic Turbulence Model
 - Solve for Flow Only
 - Use Typical Velocities for Fixed Flow Device: e.g., 0.5, 1, 1.5, 2 m/s
 - Measure ΔP Across Wind Tunnel for each Velocity Used
 - P_{outlet}=0 (gage), So ∆P is Simply Average P at Fixed Flow Device End
 - Use Profiles Window to Show the Stream wise Pressure Drop and Monitor Point Far Upstream for the ΔP

www.resheji.com

Index

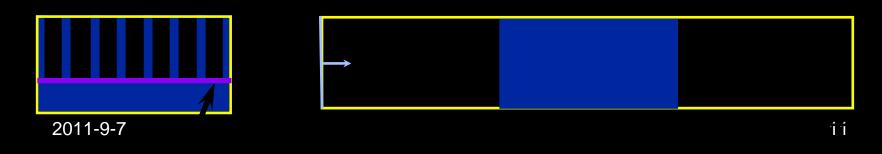
Compact Representation of Heat Sinks

- Option 2: Approximation Based on Computational Wind Tunnel Characterization (Cont.)
 - Use ∆P vs. V Data to Define Equivalent Non-Collapsed Resistance
 - Can Use Advanced Resistance Attribute (When ΔP Is Not αV^2 - Refer to Resistance Calculation Slides Later in this Lecture)
 - Typically Use Standard Resistance Attribute (Iteratively If ΔP Is Not αV^2)

2011-9-7

www.resheji.com

Index


- Option 2: Improved Approximation Based on Computational Wind Tunnel Characterization (Cont.)
 - Replace Detailed Fins (Cuboids) With Non-Collapsed Resistance
 - Re-Run One Case to Ensure that Computed ∆P's for Detailed and Compact Models Agree

www.resheji.com

Index

- Option 2: Use a Specified h on Top of the Heat Sink Base Determined Also From a Computational Wind Tunnel Analysis
 - Obtain Loss Coefficients from Previous Computational Wind Tunnel Analysis
 - Perform New Analyses Including Heat Sink Base to Determine h
 - Place a Collapsed Region on Heat Sink Base Top
 - Solve for Flow and Heat Transfer
 - Again Use Typical Velocities for Fixed Flow Device: e.g., 0.5, 1, 1.5, 2
 m/s

www.resheji.com

Index

Compact Representation of Heat Sinks

Option 2: Use a Specified h (Cont.)

- Obtain Average T and Heat Flux Over Top of Heat Sink Base
 - Probe With Mouse for Desired T Over a Vis. Plane
 - Determine q_{H.S.BaseTop} From Collapsed Region

-Or

- Or Read "h_fins" from the real fins in the Tables Window 2011-9-7

www.resheji.com

Index

Compact Representation of Heat Sinks

Option 3: Use a Specified h (Cont.)

 Replace Detailed Model With Compact Model as Shown in System Level Model

www.resheji.com

www.resheji.com

Index

- Option 3: Use a Specified h (Cont.)
 - Surface vs. Volumetric Heat Transfer Coefficient

Name: HeatSink	<u>N</u> otes			
Heat Transfer Method:	Surface			
Heat Transfer Coefficient				
C Calculated				
• Specified 2.000000e+0	02 W/(m^2 K) ♦			
Reference Temperature				
C Calculated				
• Specified 3.500000e+0	01 deg C 🗢			
2011-9-7				

Name: HeatSin	1k		<u>N</u> otes	
Heat Transfer Meth	nod:	Va	olume 🗘	
Extent of Heat Transfer				
Dalta:	5.000000e-002	m	\$	
Wetted Area	olume Transfer			
Ratio.	2.460000e+002	1/m	\$	
Heat Transfer Coefficient				
Specified	1.980000e+001	W/(m^2 K	.) 🔶	
Reference Temperature				
C Calculated				
• Specified	3.500000e+001	deg C	\$	

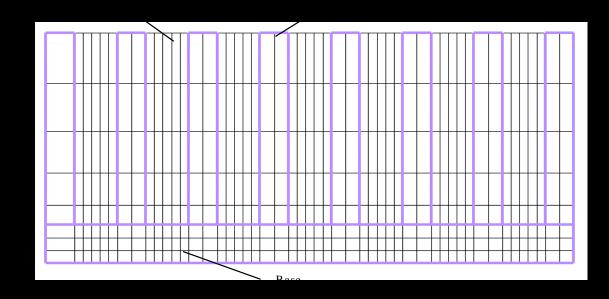
www.resheji.com

Index

Compact Representation of Heat Sinks

Option 3: Use a Specified h (Cont.)

 Re-Run One Case to Ensure that Computed Results for Detailed and Compact Models Agree for Given Power Dissipation in Heat Sink Base

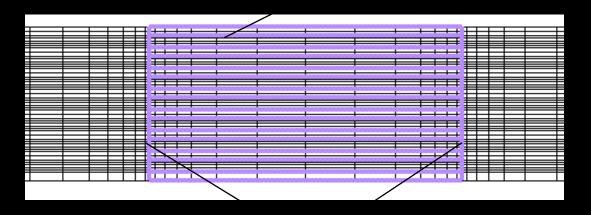


2011-9-7

www.resheji.com

Index

- Grid Between Fins for Detailed Heat Sink in Computational Wind tunnel
 - 3 Cells Will Capture Thermal Effects Accurately
 - 4 Or 5 Cells Needed for Accurate Pressure Drop


www.resheji.com

Index

Compact Representation of Heat Sinks

Grid in Streamwise Direction

 Cluster Grid at Entrance and Exit to Capture Contraction and Expansion Losses

2011-9-7

www.resheji.com

Index

Modeling Grilles, Filters and Other Flow Resistances

Use a (Collapsed or Non-Collapsed) Resistance With Appropriate Loss Coefficient

Recall, Definition of Loss Coefficient

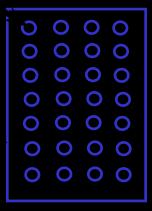
$$\begin{split} &\Delta p = f\left(\rho v^2/2\right) \qquad \text{(Collapsed)} \\ &\Delta p/\Delta x = f_x\left(\rho v^2/2\right) \qquad \text{(Non-Collapsed)} \\ &\Delta p/\Delta y = f_y\left(\rho v^2/2\right) \qquad \text{(Non-Collapsed)} \\ &\Delta p/\Delta z = f_z\left(\rho v^2/2\right) \qquad \text{(Non-Collapsed)} \end{split}$$

where:

v = velocity (device or approach)
f = loss coefficient

www.resheji.com

Index


Modeling Flow Resistances

Loss Coefficients Based on Device and Approach are Related by Geometry Alone

$$f_d/f_a = (f.a.r.)^2$$

where:

f.a.r. = free area ratio

www.resheji.com

Index

Modeling Flow Resistances

- Available Loss Coefficient Options
 - Standard
 - Assumes $\Delta p \alpha v^2$
 - Constant Loss Coefficient f
 - Advanced
 - Allows complicated Δp dependence on v
 - Loss Coefficient f not Constant

$$f = a/Re + b/Re^{\alpha}$$

in which,

 $f = loss factor (as before) \\ Re = \rho UL/\mu = Reynolds No. based on \\ a user specified length scale$

a,b, α = constants specified by the user

www.resheji.com

Index

Modeling Flow Resistances

Where Do I Get Loss Coefficients?

- Reference Texts, e.g., Fried and Idelchick
- Manufacturer Data
- Perform Computational Wind Tunnel Analysis on Device
- Advice on Loss Coefficients
 - Use Standard Model If You Have $\Delta P \sim V^2$
 - Most Turbulent, High Re Flows
 - Use Advanced Model If You Have $\Delta P \sim V$, $\Delta P \sim V^{1.7}$, etc.
 - Laminar and Transitional, Lower Re Flows
 - Can Always Use Standard Model If You're Willing to Iterate

www.resheji.com

Index

Example: Given $\Delta P = kV$

- This Case is Typical for Laminar Flow
- If Resistance Can Be Modeled As "Thin":
 - Resistance Type: Planar
 - Loss Coefficients Based On: Approach Velocity
 - Resistance Formula: Advanced
 - Length Scale (L): 1 m
 - A Coefficient: (2 L k)/ μ
 - B Coefficient: 0
 - Index: 0

www.resheji.com

Index

Example: Given $\Delta P = kV^{x}$

This Case is Typical For Flow Transitioning to Turbulent

- If Resistance Can Be Modeled As "Thin":
 - Resistance Type: Planar
 - Loss Coefficients Based On: Approach Velocity
 - Resistance Formula: Advanced
 - Length Scale: 1 m
 - A Coefficient: 0
 - B Coefficient: 2 k $(L/\mu)^{(2-x)}\rho^{(1-x)}$
 - Index: 2-x
- This is General Case; Includes:
 - $\Delta P = kV$
 - $\triangle P = kV^2$
 - $\triangle P = kV^{1.4}$
 - etc.

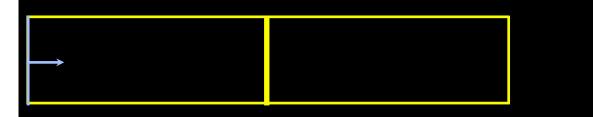
www.resheji.com

Index

Example: Given $\Delta P = k_1 V^2 + k_2 V$

- This Case is Typical For Flow Transitioning to Turbulent (It Simply Contains a Laminar and Turbulent Term)
- If Resistance Can Be Modeled As "Thin":
 - Resistance Type: Planar
 - Loss Coefficients Based On: Approach Velocity
 - Resistance Formula: Advanced
 - Length Scale: 1 m
 - A Coefficient: $(2 L k_2)/\mu$
 - B Coefficient: (2 k_1)/ ρ
 - Index: 0

This is General Case; Includes:

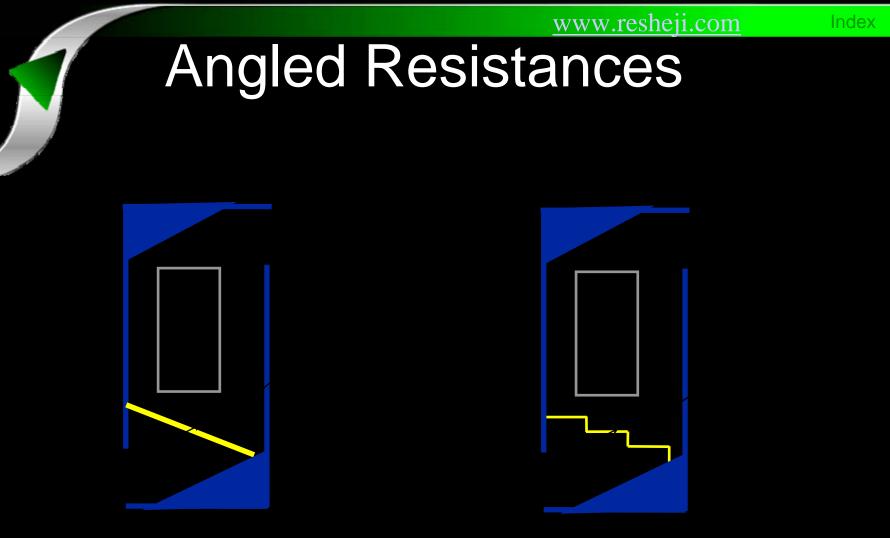

- $\Delta P = kV$
- $\Box \Delta P = kV^2$
- $\Box \Delta \mathsf{P} = \mathsf{k}_1 \mathsf{V}^2 + \mathsf{k}_2 \mathsf{V}$

Index

Modeling Flow Resistances

Validate Resistance in Computational Wind Tunnel Before Placing in System

 Ensure That You Can Reproduce the △P vs. V Data Used to Build Resistance



www.resheji.com

Index

Other Compact Models

- The Flow Losses and Heat Addition of All Components/Modules in the Analysis Need to be Accounted For.
- In Cases Where the Details of those Components Are Not Important, the Above is Still True.
- Create Compact Models for These:
 - Guess the Losses and Heat (Typically Early in Concept Design and Optimization)
 - Use a Combination of Collapsed or Volumetric Resistances With Associated Sources.
 - Create Detailed Windtunnel Models of Modules, Characterize for Losses and Create Good Compact Models. (Later when more information is available).
 - This Process is Similar to the Manual Heat Sink Compact Model

www.resheji.com

2011-9-7

www.resheji.com

Index

Angled Resistances

There are 2 Ways to Create this Angled Resistance In Flotherm.

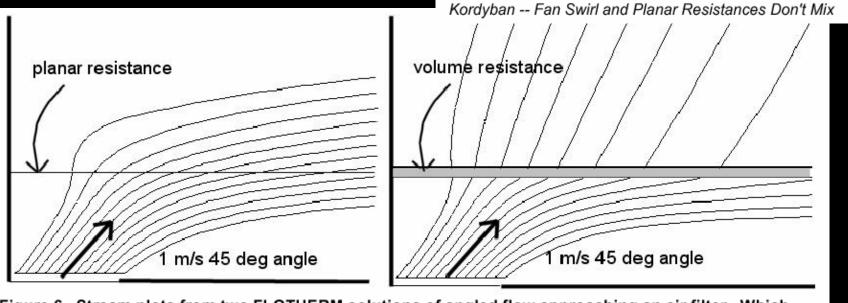
- Use and go to the User
 Support Center. Choose [Support], Then
 [Web Parts].
- Do it Yourself Using the Instructions on the Following Page.

www.resheji.com

Index

Angled Resistances

Consider Collapsed Resistances Only


- Keep Stair-Step Fit Close to Local Grid Size
- Given Data ∆P=k V^x, adjust k's as follows:
 - $k_x = k/sin^x \theta$
 - $k_y = k/\cos^x \theta$
- Then Model With Appropriate Standard or Advanced Attribute
 As for Non Angled Case

www.resheji.com

Index

Difference Between Thin and Thick Resistances

- Filters Tend to Straighten the Flow Due to Thickness (Need to Model With Non-Collapsed Resistances)
- Perforated Plates can be Modeled Correctly with Collapsed Resistances

